MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. N06255 Nickel

AWS BMg-1 belongs to the magnesium alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
210
Elongation at Break, % 3.8
45
Fatigue Strength, MPa 72
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Shear Strength, MPa 100
460
Tensile Strength: Ultimate (UTS), MPa 180
660
Tensile Strength: Yield (Proof), MPa 110
250

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 440
1420
Specific Heat Capacity, J/kg-K 980
450
Thermal Expansion, µm/m-K 26
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 1.8
8.5
Embodied Carbon, kg CO2/kg material 22
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 980
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
230
Resilience: Unit (Modulus of Resilience), kJ/m3 120
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
23
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 39
20
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.050
0 to 1.2
Iron (Fe), % 0 to 0.0050
6.0 to 24
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0 to 0.0050
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0