MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. S31060 Stainless Steel

AWS BMg-1 belongs to the magnesium alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
200
Elongation at Break, % 3.8
46
Fatigue Strength, MPa 72
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
78
Shear Strength, MPa 100
480
Tensile Strength: Ultimate (UTS), MPa 180
680
Tensile Strength: Yield (Proof), MPa 110
310

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 130
1080
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 440
1370
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 76
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 22
3.4
Embodied Energy, MJ/kg 160
48
Embodied Water, L/kg 980
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
260
Resilience: Unit (Modulus of Resilience), kJ/m3 120
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
25
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 43
4.0
Thermal Shock Resistance, points 10
15

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0 to 1.0
Nickel (Ni), % 0 to 0.0050
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0