MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. S35135 Stainless Steel

AWS BMg-1 belongs to the magnesium alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
200
Elongation at Break, % 3.8
34
Fatigue Strength, MPa 72
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 100
390
Tensile Strength: Ultimate (UTS), MPa 180
590
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 440
1380
Specific Heat Capacity, J/kg-K 980
470
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.8
8.1
Embodied Carbon, kg CO2/kg material 22
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 980
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
24
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 39
19
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.0050
28.3 to 45
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.0050
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0