MakeItFrom.com
Menu (ESC)

AWS BNi-1 vs. AWS E308LMo

AWS BNi-1 belongs to the nickel alloys classification, while AWS E308LMo belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-1 and the bottom bar is AWS E308LMo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 70
78
Tensile Strength: Ultimate (UTS), MPa 450
580

Thermal Properties

Latent Heat of Fusion, J/g 360
290
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 55
19
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 8.8
3.8
Embodied Energy, MJ/kg 120
53
Embodied Water, L/kg 240
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0.6 to 0.9
0 to 0.040
Chromium (Cr), % 13 to 15
18 to 21
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 4.0 to 5.0
59.6 to 70.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 69.8 to 75.7
9.0 to 12
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0