MakeItFrom.com
Menu (ESC)

AWS BNi-10 vs. C27400 Brass

AWS BNi-10 belongs to the nickel alloys classification, while C27400 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-10 and the bottom bar is C27400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 600
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Melting Completion (Liquidus), °C 1110
920
Melting Onset (Solidus), °C 970
870
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 11
21

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 9.4
8.0
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 230
320

Common Calculations

Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 18
13 to 23
Strength to Weight: Bending, points 17
14 to 21
Thermal Shock Resistance, points 19
12 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.0 to 3.0
0
Carbon (C), % 0.4 to 0.55
0
Chromium (Cr), % 10 to 13
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
61 to 64
Iron (Fe), % 2.5 to 4.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 57.2 to 67.1
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 15 to 17
0
Zinc (Zn), % 0
35.6 to 39
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.3