MakeItFrom.com
Menu (ESC)

AWS BNi-10 vs. C61800 Bronze

AWS BNi-10 belongs to the nickel alloys classification, while C61800 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-10 and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 600
740

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Melting Completion (Liquidus), °C 1110
1050
Melting Onset (Solidus), °C 970
1040
Specific Heat Capacity, J/kg-K 440
440
Thermal Expansion, µm/m-K 11
18

Otherwise Unclassified Properties

Base Metal Price, % relative 80
28
Density, g/cm3 9.4
8.3
Embodied Carbon, kg CO2/kg material 11
3.1
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 230
390

Common Calculations

Stiffness to Weight: Axial, points 12
7.5
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 17
22
Thermal Shock Resistance, points 19
26

Alloy Composition

Aluminum (Al), % 0 to 0.050
8.5 to 11
Boron (B), % 2.0 to 3.0
0
Carbon (C), % 0.4 to 0.55
0
Chromium (Cr), % 10 to 13
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 2.5 to 4.5
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 57.2 to 67.1
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 15 to 17
0
Zinc (Zn), % 0
0 to 0.020
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.5