MakeItFrom.com
Menu (ESC)

AWS BNi-11 vs. AISI 310MoLN Stainless Steel

AWS BNi-11 belongs to the nickel alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-11 and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 74
80
Tensile Strength: Ultimate (UTS), MPa 600
610

Thermal Properties

Latent Heat of Fusion, J/g 340
300
Melting Completion (Liquidus), °C 1100
1420
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 75
28
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 11
5.0
Embodied Energy, MJ/kg 160
70
Embodied Water, L/kg 230
200

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 21
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 17
20
Thermal Shock Resistance, points 20
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.2 to 3.1
0
Carbon (C), % 0.3 to 0.5
0 to 0.020
Chromium (Cr), % 9.0 to 11.8
24 to 26
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 2.5 to 4.0
45.2 to 53.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 62.9 to 71.2
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0 to 0.020
0 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.4 to 4.3
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 11.5 to 12.8
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0