MakeItFrom.com
Menu (ESC)

AWS BNi-11 vs. C14510 Copper

AWS BNi-11 belongs to the nickel alloys classification, while C14510 copper belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-11 and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 600
300 to 320

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 970
1050
Specific Heat Capacity, J/kg-K 450
390
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
33
Density, g/cm3 9.1
8.9
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 230
310

Common Calculations

Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 21
18
Strength to Weight: Axial, points 18
9.2 to 10
Strength to Weight: Bending, points 17
11 to 12
Thermal Shock Resistance, points 20
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.2 to 3.1
0
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 9.0 to 11.8
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
99.15 to 99.69
Iron (Fe), % 2.5 to 4.0
0
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 62.9 to 71.2
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.4 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Tellurium (Te), % 0
0.3 to 0.7
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 11.5 to 12.8
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0