MakeItFrom.com
Menu (ESC)

AWS BNi-11 vs. S34565 Stainless Steel

AWS BNi-11 belongs to the nickel alloys classification, while S34565 stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-11 and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 74
80
Tensile Strength: Ultimate (UTS), MPa 600
900

Thermal Properties

Latent Heat of Fusion, J/g 340
310
Melting Completion (Liquidus), °C 1100
1420
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 11
15

Otherwise Unclassified Properties

Base Metal Price, % relative 75
28
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 11
5.3
Embodied Energy, MJ/kg 160
73
Embodied Water, L/kg 230
210

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 21
25
Strength to Weight: Axial, points 18
32
Strength to Weight: Bending, points 17
26
Thermal Shock Resistance, points 20
22

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.2 to 3.1
0
Carbon (C), % 0.3 to 0.5
0 to 0.030
Chromium (Cr), % 9.0 to 11.8
23 to 25
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 2.5 to 4.0
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 62.9 to 71.2
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.4 to 4.3
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 11.5 to 12.8
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0