MakeItFrom.com
Menu (ESC)

AWS BNi-1a vs. AWS E318

AWS BNi-1a belongs to the nickel alloys classification, while AWS E318 belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-1a and the bottom bar is AWS E318.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 70
78
Tensile Strength: Ultimate (UTS), MPa 450
620

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 8.8
4.4
Embodied Energy, MJ/kg 120
62
Embodied Water, L/kg 240
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 13 to 15
17 to 20
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 4.0 to 5.0
57.6 to 69.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 70.6 to 76.3
11 to 14
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0