MakeItFrom.com
Menu (ESC)

AWS BNi-2 vs. C46400 Brass

AWS BNi-2 belongs to the nickel alloys classification, while C46400 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-2 and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
100
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 68
40
Tensile Strength: Ultimate (UTS), MPa 440
400 to 500

Thermal Properties

Latent Heat of Fusion, J/g 360
170
Melting Completion (Liquidus), °C 1000
900
Melting Onset (Solidus), °C 970
890
Specific Heat Capacity, J/kg-K 490
380
Thermal Expansion, µm/m-K 11
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 9.3
2.7
Embodied Energy, MJ/kg 130
47
Embodied Water, L/kg 230
330

Common Calculations

Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 15
14 to 17
Strength to Weight: Bending, points 16
15 to 17
Thermal Shock Resistance, points 16
13 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 6.0 to 8.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 2.5 to 3.5
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Nickel (Ni), % 79.1 to 84.8
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0
36.3 to 40.5
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.4