MakeItFrom.com
Menu (ESC)

AWS BNi-2 vs. S34565 Stainless Steel

AWS BNi-2 belongs to the nickel alloys classification, while S34565 stainless steel belongs to the iron alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-2 and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
210
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 68
80
Tensile Strength: Ultimate (UTS), MPa 440
900

Thermal Properties

Latent Heat of Fusion, J/g 360
310
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Expansion, µm/m-K 11
15

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 9.3
5.3
Embodied Energy, MJ/kg 130
73
Embodied Water, L/kg 230
210

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 15
32
Strength to Weight: Bending, points 16
26
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 6.0 to 8.0
23 to 25
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 2.5 to 3.5
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 79.1 to 84.8
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0