MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. EN 1.4951 Stainless Steel

AWS BNi-4 belongs to the nickel alloys classification, while EN 1.4951 stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is EN 1.4951 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
200
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 67
79
Tensile Strength: Ultimate (UTS), MPa 430
630

Thermal Properties

Latent Heat of Fusion, J/g 340
300
Melting Completion (Liquidus), °C 1070
1410
Melting Onset (Solidus), °C 980
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
25
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 10
4.3
Embodied Energy, MJ/kg 140
61
Embodied Water, L/kg 220
190

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 14
22
Strength to Weight: Bending, points 15
21
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0.040 to 0.080
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
49.1 to 57
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 91.4 to 95.5
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.035
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0