MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. Grade 18 Titanium

AWS BNi-4 belongs to the nickel alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 67
40
Tensile Strength: Ultimate (UTS), MPa 430
690 to 980

Thermal Properties

Latent Heat of Fusion, J/g 340
410
Melting Completion (Liquidus), °C 1070
1640
Melting Onset (Solidus), °C 980
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Expansion, µm/m-K 11
9.9

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 10
41
Embodied Energy, MJ/kg 140
670
Embodied Water, L/kg 220
270

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 14
43 to 61
Strength to Weight: Bending, points 15
39 to 49
Thermal Shock Resistance, points 16
47 to 67

Alloy Composition

Aluminum (Al), % 0 to 0.050
2.5 to 3.5
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0 to 0.080
Cobalt (Co), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.5
0 to 0.25
Nickel (Ni), % 91.4 to 95.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.4