MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. Nickel 725

Both AWS BNi-4 and nickel 725 are nickel alloys. They have 58% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
200
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 67
78
Tensile Strength: Ultimate (UTS), MPa 430
860

Thermal Properties

Latent Heat of Fusion, J/g 340
320
Melting Completion (Liquidus), °C 1070
1340
Melting Onset (Solidus), °C 980
1270
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
75
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 10
13
Embodied Energy, MJ/kg 140
190
Embodied Water, L/kg 220
270

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
23
Strength to Weight: Axial, points 14
28
Strength to Weight: Bending, points 15
24
Thermal Shock Resistance, points 16
23

Alloy Composition

Aluminum (Al), % 0 to 0.050
0 to 0.35
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
2.3 to 15.3
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 91.4 to 95.5
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.050
1.0 to 1.7
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0