MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. SAE-AISI 1008 Steel

AWS BNi-4 belongs to the nickel alloys classification, while SAE-AISI 1008 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 67
73
Tensile Strength: Ultimate (UTS), MPa 430
330 to 370

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 980
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 10
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 220
45

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 14
12 to 13
Strength to Weight: Bending, points 15
13 to 15
Thermal Shock Resistance, points 16
10 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0 to 0.1
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
99.31 to 99.7
Manganese (Mn), % 0
0.3 to 0.5
Nickel (Ni), % 91.4 to 95.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0