MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. S32050 Stainless Steel

AWS BNi-4 belongs to the nickel alloys classification, while S32050 stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
210
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 67
81
Tensile Strength: Ultimate (UTS), MPa 430
770

Thermal Properties

Latent Heat of Fusion, J/g 340
310
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 10
6.0
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 220
210

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 14
27
Strength to Weight: Bending, points 15
23
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 0 to 1.5
43.1 to 51.8
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 91.4 to 95.5
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.020
0 to 0.035
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0