MakeItFrom.com
Menu (ESC)

AWS BNi-5a vs. EN 1.0237 Steel

AWS BNi-5a belongs to the nickel alloys classification, while EN 1.0237 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-5a and the bottom bar is EN 1.0237 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 480
470

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 260
46

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
17
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 1.0 to 1.5
0
Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 18.5 to 19.5
0
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
98 to 100
Manganese (Mn), % 0
0 to 1.4
Nickel (Ni), % 70.1 to 73.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 7.0 to 7.5
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.045
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0