MakeItFrom.com
Menu (ESC)

AWS BNi-5a vs. N06920 Nickel

Both AWS BNi-5a and N06920 nickel are nickel alloys. They have 65% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-5a and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
82
Tensile Strength: Ultimate (UTS), MPa 480
730

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Melting Completion (Liquidus), °C 1150
1500
Melting Onset (Solidus), °C 1070
1440
Specific Heat Capacity, J/kg-K 500
440
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 9.0
9.4
Embodied Energy, MJ/kg 130
130
Embodied Water, L/kg 260
270

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
21
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 1.0 to 1.5
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 18.5 to 19.5
20.5 to 23
Cobalt (Co), % 0 to 0.1
0 to 5.0
Iron (Fe), % 0 to 0.5
17 to 20
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 70.1 to 73.5
36.9 to 53.5
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 7.0 to 7.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
1.0 to 3.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0