MakeItFrom.com
Menu (ESC)

AWS BNi-6 vs. AISI 321H Stainless Steel

AWS BNi-6 belongs to the nickel alloys classification, while AISI 321H stainless steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-6 and the bottom bar is AISI 321H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 62
77
Tensile Strength: Ultimate (UTS), MPa 450
580

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Melting Completion (Liquidus), °C 880
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 9.8
17

Otherwise Unclassified Properties

Base Metal Price, % relative 55
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 9.4
3.2
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 210
140

Common Calculations

Stiffness to Weight: Axial, points 11
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 15
21
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.060
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0
65.4 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 87.2 to 90
9.0 to 12
Phosphorus (P), % 10 to 12
0 to 0.045
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0 to 0.7
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0