MakeItFrom.com
Menu (ESC)

AWS BNi-6 vs. AWS E309H

AWS BNi-6 belongs to the nickel alloys classification, while AWS E309H belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-6 and the bottom bar is AWS E309H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
200
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 62
78
Tensile Strength: Ultimate (UTS), MPa 450
620

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 880
1410
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 9.8
14

Otherwise Unclassified Properties

Base Metal Price, % relative 55
20
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 130
52
Embodied Water, L/kg 210
180

Common Calculations

Stiffness to Weight: Axial, points 11
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.060
0.040 to 0.15
Chromium (Cr), % 0
22 to 25
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0
55.8 to 65.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 87.2 to 90
12 to 14
Phosphorus (P), % 10 to 12
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0