MakeItFrom.com
Menu (ESC)

AWS BNi-6 vs. CC767S Brass

AWS BNi-6 belongs to the nickel alloys classification, while CC767S brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-6 and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 62
40
Tensile Strength: Ultimate (UTS), MPa 450
430

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Melting Completion (Liquidus), °C 880
840
Melting Onset (Solidus), °C 880
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 9.8
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
47
Embodied Water, L/kg 210
330

Common Calculations

Stiffness to Weight: Axial, points 11
7.3
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 16
16
Thermal Shock Resistance, points 20
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0.1 to 0.8
Carbon (C), % 0 to 0.060
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 87.2 to 90
0 to 1.0
Phosphorus (P), % 10 to 12
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0
32.8 to 41.9
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0