MakeItFrom.com
Menu (ESC)

AWS BNi-7 vs. Nickel 333

Both AWS BNi-7 and nickel 333 are nickel alloys. They have 60% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-7 and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
210
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 67
81
Tensile Strength: Ultimate (UTS), MPa 550
630

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 490
450
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 8.8
8.5
Embodied Energy, MJ/kg 120
120
Embodied Water, L/kg 240
270

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 13 to 15
24 to 27
Cobalt (Co), % 0 to 0.1
2.5 to 4.0
Iron (Fe), % 0 to 0.2
9.3 to 24.5
Manganese (Mn), % 0 to 0.040
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 73.3 to 77.3
44 to 48
Phosphorus (P), % 9.7 to 10.5
0 to 0.030
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
2.5 to 4.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0