MakeItFrom.com
Menu (ESC)

AWS BNi-7 vs. N10665 Nickel

Both AWS BNi-7 and N10665 nickel are nickel alloys. They have 70% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-7 and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 170
220
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 67
84
Tensile Strength: Ultimate (UTS), MPa 550
860

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Melting Completion (Liquidus), °C 890
1620
Melting Onset (Solidus), °C 890
1570
Specific Heat Capacity, J/kg-K 490
390
Thermal Expansion, µm/m-K 11
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
75
Density, g/cm3 8.0
9.3
Embodied Carbon, kg CO2/kg material 8.8
15
Embodied Energy, MJ/kg 120
200
Embodied Water, L/kg 240
270

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 23
22
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 19
22
Thermal Shock Resistance, points 21
27

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.060
0 to 0.020
Chromium (Cr), % 13 to 15
0 to 1.0
Cobalt (Co), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0 to 0.2
0 to 2.0
Manganese (Mn), % 0 to 0.040
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 73.3 to 77.3
64.8 to 74
Phosphorus (P), % 9.7 to 10.5
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0