MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. AISI 317LM Stainless Steel

AWS BNi-9 belongs to the nickel alloys classification, while AISI 317LM stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 580
590

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1060
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 9.3
4.8
Embodied Energy, MJ/kg 130
65
Embodied Water, L/kg 260
170

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
20
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 13.5 to 16.5
18 to 20
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
54.4 to 64.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 77.1 to 83.3
13.5 to 17.5
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0