MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. AWS E308H

AWS BNi-9 belongs to the nickel alloys classification, while AWS E308H belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is AWS E308H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 580
620

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1060
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
16
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 9.3
3.2
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 260
150

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 18
21
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0.040 to 0.080
Chromium (Cr), % 13.5 to 16.5
18 to 21
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0 to 1.5
62.9 to 72.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 77.1 to 83.3
9.0 to 11
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0