MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. AWS ERTi-1

AWS BNi-9 belongs to the nickel alloys classification, while AWS ERTi-1 belongs to the titanium alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is AWS ERTi-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 580
240

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Melting Completion (Liquidus), °C 1060
1670
Melting Onset (Solidus), °C 1060
1620
Specific Heat Capacity, J/kg-K 480
540
Thermal Expansion, µm/m-K 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.4
4.5
Embodied Carbon, kg CO2/kg material 9.3
31
Embodied Energy, MJ/kg 130
510
Embodied Water, L/kg 260
110

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
19
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 13.5 to 16.5
0
Cobalt (Co), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 1.5
0 to 0.080
Nickel (Ni), % 77.1 to 83.3
0
Nitrogen (N), % 0
0 to 0.012
Oxygen (O), % 0
0.030 to 0.1
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
99.773 to 99.97
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0