MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. EN 1.4806 Stainless Steel

AWS BNi-9 belongs to the nickel alloys classification, while EN 1.4806 stainless steel belongs to the iron alloys. They have 51% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
75
Tensile Strength: Ultimate (UTS), MPa 580
470

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Melting Completion (Liquidus), °C 1060
1380
Melting Onset (Solidus), °C 1060
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 9.3
5.4
Embodied Energy, MJ/kg 130
76
Embodied Water, L/kg 260
190

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 18
17
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0.3 to 0.5
Chromium (Cr), % 13.5 to 16.5
16 to 18
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
40.4 to 48.7
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 77.1 to 83.3
34 to 36
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0