MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. R58150 Titanium

AWS BNi-9 belongs to the nickel alloys classification, while R58150 titanium belongs to the titanium alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 72
52
Tensile Strength: Ultimate (UTS), MPa 580
770

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Melting Completion (Liquidus), °C 1060
1760
Melting Onset (Solidus), °C 1060
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 12
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 60
48
Density, g/cm3 8.4
5.4
Embodied Carbon, kg CO2/kg material 9.3
31
Embodied Energy, MJ/kg 130
480
Embodied Water, L/kg 260
150

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
32
Strength to Weight: Axial, points 19
40
Strength to Weight: Bending, points 18
35
Thermal Shock Resistance, points 19
48

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 13.5 to 16.5
0
Cobalt (Co), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 77.1 to 83.3
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
83.5 to 86
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0