MakeItFrom.com
Menu (ESC)

AWS E100C-K3 vs. 308.0 Aluminum

AWS E100C-K3 belongs to the iron alloys classification, while 308.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E100C-K3 and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 18
2.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 770
190
Tensile Strength: Yield (Proof), MPa 700
110

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 48
140
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.7
7.7
Embodied Energy, MJ/kg 23
140
Embodied Water, L/kg 53
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
83
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 13
55
Thermal Shock Resistance, points 23
9.2

Alloy Composition

Aluminum (Al), % 0
85.7 to 91
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
4.0 to 5.0
Iron (Fe), % 92.6 to 98.5
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.75 to 2.3
0 to 0.5
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
5.0 to 6.0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5