MakeItFrom.com
Menu (ESC)

AWS E100C-K3 vs. CC380H Copper-nickel

AWS E100C-K3 belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E100C-K3 and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
47
Tensile Strength: Ultimate (UTS), MPa 770
310
Tensile Strength: Yield (Proof), MPa 700
120

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.7
3.8
Embodied Energy, MJ/kg 23
58
Embodied Water, L/kg 53
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27
9.8
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 23
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
84.5 to 89
Iron (Fe), % 92.6 to 98.5
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.75 to 2.3
1.0 to 1.5
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0