MakeItFrom.com
Menu (ESC)

AWS E100C-K3 vs. Grade CU5MCuC Nickel

AWS E100C-K3 belongs to the iron alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E100C-K3 and the bottom bar is grade CU5MCuC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
22
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 770
580
Tensile Strength: Yield (Proof), MPa 700
270

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
45
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.7
7.7
Embodied Energy, MJ/kg 23
110
Embodied Water, L/kg 53
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 24
19
Thermal Shock Resistance, points 23
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.050
Chromium (Cr), % 0 to 0.15
19.5 to 23.5
Copper (Cu), % 0 to 0.35
1.5 to 3.5
Iron (Fe), % 92.6 to 98.5
22.2 to 37.9
Manganese (Mn), % 0.75 to 2.3
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.65
2.5 to 3.5
Nickel (Ni), % 0.5 to 2.5
38 to 44
Niobium (Nb), % 0
0.6 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0