MakeItFrom.com
Menu (ESC)

AWS E100C-K3 vs. C90700 Bronze

AWS E100C-K3 belongs to the iron alloys classification, while C90700 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E100C-K3 and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 770
330
Tensile Strength: Yield (Proof), MPa 700
180

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 48
71
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.7
3.7
Embodied Energy, MJ/kg 23
60
Embodied Water, L/kg 53
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
34
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27
10
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 13
22
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
88 to 90
Iron (Fe), % 92.6 to 98.5
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.75 to 2.3
0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
10 to 12
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6