MakeItFrom.com
Menu (ESC)

AWS E110C-K3 vs. EN AC-45400 Aluminum

AWS E110C-K3 belongs to the iron alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E110C-K3 and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 17
6.7
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 870
260
Tensile Strength: Yield (Proof), MPa 760
130

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 48
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
95

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.7
7.8
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 53
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
14
Resilience: Unit (Modulus of Resilience), kJ/m3 1550
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 26
32
Thermal Diffusivity, mm2/s 13
54
Thermal Shock Resistance, points 26
12

Alloy Composition

Aluminum (Al), % 0
88.4 to 92.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
2.6 to 3.6
Iron (Fe), % 92.6 to 98.5
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.75 to 2.3
0 to 0.55
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
4.5 to 6.0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15