MakeItFrom.com
Menu (ESC)

AWS E110C-K3 vs. N10675 Nickel

AWS E110C-K3 belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E110C-K3 and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 17
47
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
85
Tensile Strength: Ultimate (UTS), MPa 870
860
Tensile Strength: Yield (Proof), MPa 760
400

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 48
11
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
80
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 1.7
16
Embodied Energy, MJ/kg 23
210
Embodied Water, L/kg 53
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
330
Resilience: Unit (Modulus of Resilience), kJ/m3 1550
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 26
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0 to 0.010
Chromium (Cr), % 0 to 0.15
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.35
0 to 0.2
Iron (Fe), % 92.6 to 98.5
1.0 to 3.0
Manganese (Mn), % 0.75 to 2.3
0 to 3.0
Molybdenum (Mo), % 0.25 to 0.65
27 to 32
Nickel (Ni), % 0.5 to 2.5
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0 to 0.030
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0