MakeItFrom.com
Menu (ESC)

AWS E110C-K4 vs. ASTM A242 HSLA Steel

Both AWS E110C-K4 and ASTM A242 HSLA steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E110C-K4 and the bottom bar is ASTM A242 HSLA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
22
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 850
490
Tensile Strength: Yield (Proof), MPa 780
330

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
1.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 23
18
Embodied Water, L/kg 54
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1600
290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 30
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 25
14

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 0.15 to 0.65
0
Copper (Cu), % 0 to 0.35
0.2 to 0.45
Iron (Fe), % 92.1 to 98.4
98.2 to 99.8
Manganese (Mn), % 0.75 to 2.3
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0
Phosphorus (P), % 0 to 0.025
0 to 0.15
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0 to 0.050
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0