MakeItFrom.com
Menu (ESC)

AWS E120C-K4 vs. 771.0 Aluminum

AWS E120C-K4 belongs to the iron alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E120C-K4 and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
1.7 to 6.5
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 950
250 to 370
Tensile Strength: Yield (Proof), MPa 840
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 41
140 to 150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
82

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.7
8.0
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 54
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 1880
310 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 34
23 to 35
Strength to Weight: Bending, points 27
29 to 39
Thermal Diffusivity, mm2/s 11
54 to 58
Thermal Shock Resistance, points 28
11 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 92.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0.060 to 0.2
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 92.1 to 98.4
0 to 0.15
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0.75 to 2.3
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.1 to 0.2
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
6.5 to 7.5
Residuals, % 0
0 to 0.15