MakeItFrom.com
Menu (ESC)

AWS E120C-K4 vs. EN 1.4959 Stainless Steel

Both AWS E120C-K4 and EN 1.4959 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E120C-K4 and the bottom bar is EN 1.4959 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
40
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 950
630
Tensile Strength: Yield (Proof), MPa 840
190

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.7
5.4
Embodied Energy, MJ/kg 23
76
Embodied Water, L/kg 54
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1880
96
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 34
22
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 28
15

Alloy Composition

Aluminum (Al), % 0
0.25 to 0.65
Carbon (C), % 0 to 0.15
0.050 to 0.1
Chromium (Cr), % 0.15 to 0.65
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.35
0 to 0.5
Iron (Fe), % 92.1 to 98.4
39.4 to 50.5
Manganese (Mn), % 0.75 to 2.3
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
30 to 34
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.8
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.25 to 0.65
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0