MakeItFrom.com
Menu (ESC)

AWS E120C-K4 vs. CC498K Bronze

AWS E120C-K4 belongs to the iron alloys classification, while CC498K bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E120C-K4 and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 950
260
Tensile Strength: Yield (Proof), MPa 840
130

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
920
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 41
73
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.7
3.2
Embodied Energy, MJ/kg 23
52
Embodied Water, L/kg 54
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
30
Resilience: Unit (Modulus of Resilience), kJ/m3 1880
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 34
8.1
Strength to Weight: Bending, points 27
10
Thermal Diffusivity, mm2/s 11
22
Thermal Shock Resistance, points 28
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0
Copper (Cu), % 0 to 0.35
85 to 90
Iron (Fe), % 92.1 to 98.4
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0.75 to 2.3
0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.8
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0 to 0.5
0