MakeItFrom.com
Menu (ESC)

AWS E120C-K4 vs. C63200 Bronze

AWS E120C-K4 belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E120C-K4 and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 950
640 to 710
Tensile Strength: Yield (Proof), MPa 840
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 41
35
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 23
55
Embodied Water, L/kg 54
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1880
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 34
21 to 24
Strength to Weight: Bending, points 27
20 to 21
Thermal Diffusivity, mm2/s 11
9.6
Thermal Shock Resistance, points 28
22 to 24

Alloy Composition

Aluminum (Al), % 0
8.7 to 9.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0
Copper (Cu), % 0 to 0.35
78.8 to 82.6
Iron (Fe), % 92.1 to 98.4
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.75 to 2.3
1.2 to 2.0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
4.0 to 4.8
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.5