MakeItFrom.com
Menu (ESC)

AWS E240 vs. 1050 Aluminum

AWS E240 belongs to the iron alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E240 and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 17
4.6 to 37
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 770
76 to 140

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 160
1200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 28
7.8 to 14
Strength to Weight: Bending, points 24
15 to 22
Thermal Diffusivity, mm2/s 3.9
94
Thermal Shock Resistance, points 19
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 58.6 to 68.4
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 10.5 to 13.5
0 to 0.050
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050