MakeItFrom.com
Menu (ESC)

AWS E240 vs. S21800 Stainless Steel

Both AWS E240 and S21800 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E240 and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 770
740

Thermal Properties

Latent Heat of Fusion, J/g 290
340
Melting Completion (Liquidus), °C 1390
1360
Melting Onset (Solidus), °C 1350
1310
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 14
15
Density, g/cm3 7.7
7.5
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 22
19
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 28
27
Strength to Weight: Bending, points 24
24
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 17 to 19
16 to 18
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 58.6 to 68.4
59.1 to 65.4
Manganese (Mn), % 10.5 to 13.5
7.0 to 9.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 4.0 to 6.0
8.0 to 9.0
Nitrogen (N), % 0.1 to 0.3
0.080 to 0.18
Phosphorus (P), % 0 to 0.040
0 to 0.060
Silicon (Si), % 0 to 1.0
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0 to 0.030