MakeItFrom.com
Menu (ESC)

AWS E2594 vs. EN AC-43300 Aluminum

AWS E2594 belongs to the iron alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E2594 and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 17
3.4 to 6.7
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 850
280 to 290

Thermal Properties

Latent Heat of Fusion, J/g 300
540
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.5
Embodied Carbon, kg CO2/kg material 4.3
7.9
Embodied Energy, MJ/kg 60
150
Embodied Water, L/kg 190
1080

Common Calculations

Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 30
31 to 32
Strength to Weight: Bending, points 25
37 to 38
Thermal Diffusivity, mm2/s 4.3
59
Thermal Shock Resistance, points 21
13 to 14

Alloy Composition

Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 53.8 to 63.8
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0.5 to 2.0
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1