MakeItFrom.com
Menu (ESC)

AWS E2595 vs. S40930 Stainless Steel

Both AWS E2595 and S40930 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E2595 and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
23
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
75
Tensile Strength: Ultimate (UTS), MPa 850
430

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.4
2.3
Embodied Energy, MJ/kg 61
32
Embodied Water, L/kg 190
94

Common Calculations

PREN (Pitting Resistance) 42
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 4.2
6.7
Thermal Shock Resistance, points 21
16

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 24 to 27
10.5 to 11.7
Copper (Cu), % 0.4 to 1.5
0
Iron (Fe), % 51.4 to 64.5
84.7 to 89.4
Manganese (Mn), % 0 to 2.5
0 to 1.0
Molybdenum (Mo), % 2.5 to 4.5
0
Nickel (Ni), % 8.0 to 10.5
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.2
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2
Tungsten (W), % 0.4 to 1.0
0