MakeItFrom.com
Menu (ESC)

AWS E308H vs. 6016 Aluminum

AWS E308H belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E308H and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
11 to 27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 620
200 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
190 to 210
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.2
8.2
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 150
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
21 to 29
Strength to Weight: Bending, points 21
29 to 35
Thermal Diffusivity, mm2/s 4.2
77 to 86
Thermal Shock Resistance, points 16
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 18 to 21
0 to 0.1
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 62.9 to 72.5
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0.5 to 2.5
0 to 0.2
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.0 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15