MakeItFrom.com
Menu (ESC)

AWS E308H vs. C72800 Copper-nickel

AWS E308H belongs to the iron alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E308H and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
3.9 to 23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 620
520 to 1270

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
920
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
55
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 16
38
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.2
4.4
Embodied Energy, MJ/kg 46
68
Embodied Water, L/kg 150
360

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
17 to 40
Strength to Weight: Bending, points 21
16 to 30
Thermal Diffusivity, mm2/s 4.2
17
Thermal Shock Resistance, points 16
19 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
78.3 to 82.8
Iron (Fe), % 62.9 to 72.5
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0.5 to 2.5
0.050 to 0.3
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 9.0 to 11
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.3