MakeItFrom.com
Menu (ESC)

AWS E308L vs. C355.0 Aluminum

AWS E308L belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E308L and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
2.7 to 3.8
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 580
290 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.2
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 150
1120

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
30 to 32
Strength to Weight: Bending, points 20
36 to 37
Thermal Diffusivity, mm2/s 4.1
60
Thermal Shock Resistance, points 15
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
1.0 to 1.5
Iron (Fe), % 62.9 to 72.5
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.5 to 2.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15