MakeItFrom.com
Menu (ESC)

AWS E308L vs. EN 1.3961 Alloy

Both AWS E308L and EN 1.3961 alloy are iron alloys. They have 74% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E308L and the bottom bar is EN 1.3961 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
31
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 580
450

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 14
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.2
4.8
Embodied Energy, MJ/kg 46
66
Embodied Water, L/kg 150
110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 20
16
Thermal Shock Resistance, points 15
130

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.050
Chromium (Cr), % 18 to 21
0 to 0.25
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 62.9 to 72.5
60.7 to 65
Manganese (Mn), % 0.5 to 2.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.75
0 to 1.0
Nickel (Ni), % 9.0 to 11
35 to 37
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020