MakeItFrom.com
Menu (ESC)

AWS E308LMo vs. 7178 Aluminum

AWS E308LMo belongs to the iron alloys classification, while 7178 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E308LMo and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
4.5 to 12
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 580
240 to 640

Thermal Properties

Latent Heat of Fusion, J/g 290
370
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
91

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 3.8
8.2
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 160
1110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 21
21 to 58
Strength to Weight: Bending, points 20
28 to 54
Thermal Diffusivity, mm2/s 4.2
47
Thermal Shock Resistance, points 15
10 to 28

Alloy Composition

Aluminum (Al), % 0
85.4 to 89.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0.18 to 0.28
Copper (Cu), % 0 to 0.75
1.6 to 2.4
Iron (Fe), % 59.6 to 70.5
0 to 0.5
Magnesium (Mg), % 0
2.4 to 3.1
Manganese (Mn), % 0.5 to 2.5
0 to 0.3
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
6.3 to 7.3
Residuals, % 0
0 to 0.15