MakeItFrom.com
Menu (ESC)

AWS E308LMo vs. AWS E80C-B6

Both AWS E308LMo and AWS E80C-B6 are iron alloys. They have 72% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E308LMo and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
74
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
4.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.8
Embodied Energy, MJ/kg 53
25
Embodied Water, L/kg 160
71

Common Calculations

PREN (Pitting Resistance) 28
7.1
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.1
Chromium (Cr), % 18 to 21
4.5 to 6.0
Copper (Cu), % 0 to 0.75
0 to 0.35
Iron (Fe), % 59.6 to 70.5
90.1 to 94.4
Manganese (Mn), % 0.5 to 2.5
0.4 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0.45 to 0.65
Nickel (Ni), % 9.0 to 12
0 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5